Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Opt Express ; 15(4): 2014-2047, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38633082

RESUMO

Optical coherence tomography (OCT) is an ideal imaging technique for noninvasive and longitudinal monitoring of multicellular tumor spheroids (MCTS). However, the internal structure features within MCTS from OCT images are still not fully utilized. In this study, we developed cross-statistical, cross-screening, and composite-hyperparameter feature processing methods in conjunction with 12 machine learning models to assess changes within the MCTS internal structure. Our results indicated that the effective features combined with supervised learning models successfully classify OVCAR-8 MCTS culturing with 5,000 and 50,000 cell numbers, MCTS with pancreatic tumor cells (Panc02-H7) culturing with the ratio of 0%, 33%, 50%, and 67% of fibroblasts, and OVCAR-4 MCTS treated by 2-methoxyestradiol, AZD1208, and R-ketorolac with concentrations of 1, 10, and 25 µM. This approach holds promise for obtaining multi-dimensional physiological and functional evaluations for using OCT and MCTS in anticancer studies.

2.
Front Pharmacol ; 15: 1338951, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38333006

RESUMO

Osteoporosis (OP) is a bone disease associated with increasing age. Currently, the most common medications used to treat OP are anabolic agents, anti-resorptive agents, and medications with other mechanisms of action. However, many of these medications have unfavorable adverse effects or are not intended for long-term use, potentially exerting a severe negative impact on a patient's life and career and placing a heavy burden on families and society. There is an urgent need to find new drugs that can replace these and have fewer adverse effects. Quercetin (Que) is a common flavonol in nature. Numerous studies have examined the therapeutic applications of Que. However, a comprehensive review of the anti-osteoporotic effects of Que has not yet been conducted. This review aimed to describe the recent studies on the anti-osteoporotic effects of Que, including its biological, pharmacological, pharmacokinetic, and toxicological properties. The outcomes demonstrated that Que could enhance OP by increasing osteoblast differentiation and activity and reducing osteoclast differentiation and activity via the pathways of Wnt/ß-catenin, BMP/SMAD/RUNX2, OPG/RANKL/RANK, ERK/JNK, oxidative stress, apoptosis, and transcription factors. Thus, Que is a promising novel drug for the treatment of OP.

3.
J Biophotonics ; 17(3): e202300409, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38176434

RESUMO

Cerebral microvascular health is a key biomarker for the study of natural aging and associated neurological diseases. Our aim is to quantify aging-associated change of microvasculature at diverse dimensions in mice brain. We used optical coherence tomography (OCT) and two-photon microscopy (TPM) to obtain nonaged and aged C57BL/6J mice cerebral microvascular images in vivo. Our results indicated that artery & vein, arteriole & venule, and capillary from nonaged and aged mice showed significant differences in density, diameter, complexity, perimeter, and tortuosity. OCT angiography and TPM provided the comprehensive quantification for arteriole and venule via compensating the limitation of each modality alone. We further demonstrated that arteriole and venule at specific dimensions exhibited negative correlations in most quantification analyses between nonaged and aged mice, which indicated that TPM and OCT were able to offer complementary vascular information to study the change of cerebral blood vessels in aging.


Assuntos
Microscopia , Tomografia de Coerência Óptica , Animais , Camundongos , Tomografia de Coerência Óptica/métodos , Camundongos Endogâmicos C57BL , Microvasos/diagnóstico por imagem , Envelhecimento
4.
Elife ; 132024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38240316

RESUMO

Lysosomes are active sites to integrate cellular metabolism and signal transduction. A collection of proteins associated with the lysosome mediate these metabolic and signaling functions. Both lysosomal metabolism and lysosomal signaling have been linked to longevity regulation; however, how lysosomes adjust their protein composition to accommodate this regulation remains unclear. Using deep proteomic profiling, we systemically profiled lysosome-associated proteins linked with four different longevity mechanisms. We discovered the lysosomal recruitment of AMP-activated protein kinase and nucleoporin proteins and their requirements for longevity in response to increased lysosomal lipolysis. Through comparative proteomic analyses of lysosomes from different tissues and labeled with different markers, we further elucidated lysosomal heterogeneity across tissues as well as the increased enrichment of the Ragulator complex on Cystinosin-positive lysosomes. Together, this work uncovers lysosomal proteome heterogeneity across multiple scales and provides resources for understanding the contribution of lysosomal protein dynamics to signal transduction, organelle crosstalk, and organism longevity.


Assuntos
Lisossomos , Proteômica , Lisossomos/metabolismo , Membranas Intracelulares/metabolismo , Proteoma/metabolismo , Transdução de Sinais
5.
J Biophotonics ; 17(2): e202300330, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37833242

RESUMO

Epidural anesthesia helps manage pain during different surgeries. Nonetheless, the precise placement of the epidural needle remains a challenge. In this study, we developed a probe based on polarization-sensitive optical coherence tomography (PS-OCT) to enhance the epidural anesthesia needle placement. The probe was tested on six porcine spinal samples. The multimodal imaging guidance used the OCT intensity mode and three distinct PS-OCT modes: (1) phase retardation, (2) optic axis, and (3) degree of polarization uniformity (DOPU). Each mode enabled the classification of different epidural tissues through distinct imaging characteristics. To further streamline the tissue recognition procedure, convolutional neural network (CNN) were used to autonomously identify the tissue types within the probe's field of view. ResNet50 models were developed for all four imaging modes. DOPU imaging was found to provide the highest cross-testing accuracy of 91.53%. These results showed the improved precision by PS-OCT in guiding epidural anesthesia needle placement.


Assuntos
Anestesia Epidural , Tomografia de Coerência Óptica , Animais , Suínos , Tomografia de Coerência Óptica/métodos , Imagem Multimodal , Redes Neurais de Computação
6.
Res Sq ; 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38045314

RESUMO

Percutaneous renal biopsy (PRB) is commonly used for kidney cancer diagnosis. However, current PRB remains challenging in sampling accuracy. This study introduces a forward-viewing optical coherence tomography (OCT) probe for differentiating tumor and normal tissues, aiming at precise PRB guidance. Five human kidneys and renal carcinoma samples were used to evaluate the performance of our probe. Based on their distinct OCT imaging features, tumor and normal renal tissues can be accurately distinguished. We examined the attenuation coefficient for tissue classification and achieved 98.19% tumor recognition accuracy, but underperformed for distinguishing normal tissues. We further developed convolutional neural networks (CNN) and evaluated two CNN architectures: ResNet50 and InceptionV3, yielding 99.51% and 99.48% accuracies for tumor recognition, and over 98.90% for normal tissues recognition. In conclusion, combining OCT and CNN significantly enhanced the PRB guidance, offering a promising guidance technology for improved kidney cancer diagnosis.

7.
Artigo em Inglês | MEDLINE | ID: mdl-38013444

RESUMO

BACKGROUND: Cervical spondylotic radiculopathy is a common form of cervical spondylosis caused by degeneration of the cervical spine. Currently, non-surgical treatment is the preferred treatment method, and Chinese medicine is widely used. OBJECTIVE: To investigate the effect of radiculopathy spondylosis by tuina spinning and lifting technique. EXPERIMENTAL DESIGN: We conducted a 12-week, open-label, analyst-blinded, randomized clinical trial ( 2 weeks of intervention plus 10 weeks of observational follow-up ). A total of 25 patients with radiculopathy were collected, and data was analyzed during the treatment and recovery period. INTERVENTIONS: Neck pain granules group: a package of oral neck pain granules after meals, three times a day, treatment for 2 weeks; neck pain granules combined with massage lifting technique, treatment group: use, massage lifting technique treatment, once every two days, normal take neck pain granules, treatment for 2 weeks. All cases were followed up for 2.5 months. Main monitoring indicators: Visual Analog Scale, Neck Dysfunction Index score, and Tanaka jiu ( Tanaka Yasuhisa Cervical Spondylosis Symptom Scale ) were recorded on time, and statistical statistics were made. RESULT: The scores of VAS and NDI were significantly more effective in the neck pain granules combined with the tuina group than in the neck pain granules group, while the Tanaka Yasuhisa Cervical Spondylosis Symptom Scale was not significantly different between the two groups. CONCLUSION: The treatment effect of neck pain granules combined with tuina was significantly better than that of traditional Chinese medicine alone.

8.
IEEE Trans Biomed Eng ; 70(6): 1891-1901, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37015385

RESUMO

OBJECTIVE: Multicellular tumor spheroids (MCTs) are indispensable models for evaluating drug efficacy for precision cancer therapeutic strategies as well as for repurposing FDA-approved drugs for ovarian cancer. However, current imaging techniques cannot provide effective monitoring of pathological responses due to shallow penetration and experimentally operative destruction. We plan to utilize a noninvasive optical imaging tool to achieve in vivo longitudinal monitoring of the growth of MCTs and therapeutic responses to repurpose three FDA-approved drugs for ovarian cancer therapy. METHODS: A swept-source optical coherence tomography (SS-OCT) system was used to monitor the volume growth of MCTs over 11 days. Three inhibitors of 2-Methoxyestradiol (2-ME), AZD1208, and R-Ketorolac (R-keto) with concentrations of 1, 10, and 25 µM were employed to treat ovarian MCTs on day 5. Three-dimensional (3D), intrinsic optical attenuation contrast, and degree of uniformity were applied to analyze the therapeutic effect of these inhibitors on ovarian MCTs. RESULTS: We found that 2-ME, AZD1208, and R-keto with concentration of 10 and 25 µM significantly inhibited the volume growth of ovarian MCTs. There was no effect to necrotic tissues from all concentrations of 2-ME, AZD1208, and R-keto inhibitors from our OCT results. 2-ME and AZD1208 inhibited the growth of high uniformity tissues within MCTs and higher concentrations provided more significant inhibitory effects. CONCLUSION: Our results indicated that OCT was capable and reliable to monitor the therapeutic effect of inhibitors to ovarian MCTs and it can be used for the rapid characterization of novel therapeutics for ovarian cancers in the future.


Assuntos
Reposicionamento de Medicamentos , Neoplasias Ovarianas , Humanos , Feminino , Tomografia de Coerência Óptica/métodos , Mercaptoetanol/uso terapêutico , Neoplasias Ovarianas/diagnóstico por imagem , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia
9.
bioRxiv ; 2023 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-36909655

RESUMO

Organism aging occurs at the multicellular level; however, how pro-longevity mechanisms slow down aging in different cell types remains unclear. We generated single-cell transcriptomic atlases across the lifespan of Caenorhabditis elegans under different pro-longevity conditions (http://mengwanglab.org/atlas). We found cell-specific, age-related changes across somatic and germ cell types and developed transcriptomic aging clocks for different tissues. These clocks enabled us to determine tissue-specific aging-slowing effects of different pro-longevity mechanisms, and identify major cell types sensitive to these regulations. Additionally, we provided a systemic view of alternative polyadenylation events in different cell types, as well as their cell-type-specific changes during aging and under different pro-longevity conditions. Together, this study provides molecular insights into how aging occurs in different cell types and how they respond to pro-longevity strategies.

10.
Front Neurol ; 14: 1120446, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36949855

RESUMO

Objective: Neutrophil gelatinase-associated lipoprotein (NGAL), a protein encoded by the lipocalcin-2 (LCN2) gene, has been reported to be involved in multiple processes of innate immunity, but its relationship with spinal cord injury (SCI) remains unclear. This study set out to determine whether NGAL played a role in the development of cognitive impairment following SCI. Methods: At the Neck-Shoulder and Lumbocrural Pain Hospital, a total of 100 SCI patients and 72 controls were enrolled in the study through recruitment. Through questionnaires, baseline data on the participants' age, gender, education level, lifestyle choices (drinking and smoking) and underlying illnesses (hypertension, diabetes, coronary heart disease, and hyperlipidemia) were gathered. The individuals' cognitive performance was evaluated using the Montreal Cognitive Scale (MoCA), and their serum NGAL levels were discovered using ELISA. Results: The investigation included 72 controls and 100 SCI patients. The baseline data did not differ substantially between the two groups, however the SCI group's serum NGAL level was higher than the control group's (p < 0.05), and this elevated level was adversely connected with the MoCA score (p < 0.05). According to the results of the ROC analysis, NGAL had a sensitivity of 58.24% and a specificity of 86.72% for predicting cognitive impairment following SCI. Conclusions: The changes in serum NGAL level could serve as a biomarker for cognitive impairment in SCI patients, and this holds true even after taking in account several confounding variables.

11.
ACS Appl Mater Interfaces ; 15(3): 3781-3790, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36631295

RESUMO

The activation of nanoparticles (NPs) in the tumor microenvironment exerts synergistic therapeutic effects with chemotherapy against multiple cancers. In this study, an NP system prepared using biocompatible MIL-100 NPs was studied as an effective vehicle to deliver oxaliplatin for hepatocellular carcinoma treatment. The NPs were coated with polydopamine (PDA) and NH2-PEGTK-COOH and then loaded with oxaliplatin to create the multi-functional NP Oxa@MIL-PDA-PEGTK. Oxa@MIL-PDA-PEGTK is activated in the tumor microenvironment, causing the generation of cytotoxic reactive oxygen species (ROS) via the Fenton reaction and the release of the loaded oxaliplatin. In addition, under near-infrared (NIR) irradiation, Oxa@MIL-PDA-PEGTK can generate hyperthermia at tumor sites. Moreover, owing to the light-induced activation of the Oxa@MIL-PDA-PEGTK NPs, higher drug delivery efficiency, more precise targeted activation, and reduced off-target toxicity were observed in in vitro and in vivo experiments. Taken together, owing to its improved drug delivery efficiency and multi-functional activities, including the ability for targeted chemotherapy coupled with photothermal and chemodynamic therapy, Oxa@MIL-PDA-PEGTK may serve as a new approach for treating hepatocellular carcinoma.


Assuntos
Carcinoma Hepatocelular , Hipertermia Induzida , Neoplasias Hepáticas , Estruturas Metalorgânicas , Nanopartículas , Humanos , Carcinoma Hepatocelular/terapia , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Lasers , Neoplasias Hepáticas/terapia , Estruturas Metalorgânicas/farmacologia , Oxaliplatina/farmacologia , Fototerapia , Terapia Fototérmica , Microambiente Tumoral
12.
Artigo em Inglês | MEDLINE | ID: mdl-36674371

RESUMO

Understanding the specific effects of multidimensional elements of a built environment, transportation management policies, and the socio-demographics of travelers associated with commuting carbon emissions is significant for planners in promoting low-carbon and healthy urban development through transportation and land use and urban management policies. Most of the existing studies focus on the complex mechanisms affecting commuting behavior, but the relevant elements and specific mechanisms affecting commuting carbon emissions have not received sufficient attention. This study uses a random forest approach to analyze residential travel data from Wuhan, China. The results show that built environment and transportation demand management policies are critical to commuting carbon emissions, and that there is a non-linear association between multidimensional factors and commuting carbon emissions in Chinese cities. In addition, the study examines the synergistic effects of built environment and transportation management policies on commuting carbon emissions among different built environment elements. The results of the study provide valuable insights for planners in formulating low-carbon city and transportation development policies.


Assuntos
Carbono , Meios de Transporte , Cidades , Carbono/análise , China , Viagem
13.
Sci Adv ; 9(1): eadd1541, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36608118

RESUMO

Cell therapies and regenerative medicine interventions require an adequate source of therapeutic cells. Here, we demonstrate that constructing in vivo osteo-organoids by implanting bone morphogenetic protein-2-loaded scaffolds into the internal muscle pocket near the femur of mice supports the growth and subsequent harvest of therapeutically useful cells including hematopoietic stem/progenitor cells (HSPCs), mesenchymal stem cells (MSCs), lymphocytes, and myeloid cells. Profiling of the in vivo osteo-organoid maturation process delineated three stages-fibroproliferation, osteochondral differentiation, and marrow generation-each of which entailed obvious changes in the organoid structure and cell type distribution. The MSCs harvested from the osteochondral differentiation stage mitigated carbon tetrachloride (CCl4)-induced chronic liver fibrosis in mice, while HSPCs and immune cells harvested during the marrow generation stage rapidly and effectively reconstituted the impaired peripheral and solid immune organs of irradiated mice. These findings demonstrate the therapeutic potentials of in vivo osteo-organoid-derived cells in cell therapies.


Assuntos
Células-Tronco Hematopoéticas , Fígado , Animais , Camundongos , Diferenciação Celular , Terapia Baseada em Transplante de Células e Tecidos , Organoides
14.
Bioact Mater ; 20: 638-650, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35846838

RESUMO

Exposure to a growth factor abundant milieu has remarkable regenerative and rejuvenating effects on organ diseases, tissue damage, and regeneration, including skeletal system defects and bone regeneration. Although the introduction of candidate growth factors into relevant fields has been reported, their regenerative effects remain unsatisfactory, mainly because of the experimental challenges with limited types of growth factors, elusive dosage adjustment, and asynchronous stem cell activation with cytokine secretion. Here, an innovative hydrogel recapitulating a growth factor-enriched microenvironment (GEM) for regenerative advantage, is reported. This sulfated hydrogel includes bone morphogenetic protein-2 (BMP-2), an essential growth factor in osteogenesis, to direct mesenchymal stem cell (MSC) differentiation, stimulate cell proliferation, and improve bone formation. The semi-synthetic hydrogel, sulfonated gelatin (S-Gelatin), can amplify BMP-2 signaling in mouse MSCs by enhancing the binding between BMP-2 and BMP-2 type II receptors (BMPR2), which are located on MSC nuclei and activated by the hydrogel. Importantly, the dramatically improved cytokine secretion of MSCs throughout regeneration confirms the growth factor-acquiring potential of S-Gelatin/rhBMP-2 hydrogel, leading to the vascularization enhancement. These findings provide a new strategy to achieve an in situ GEM and accelerated bone regeneration by amplifying the regenerative capacity of rhBMP-2 and capturing endogenous growth factors.

15.
Artigo em Inglês | MEDLINE | ID: mdl-36360961

RESUMO

Phthalates are ubiquitous 'modern' chemical compounds with potential negative impacts on children's health. A nested case-control study was designed to investigate associations of phthalate exposure with children's asthma and allergic symptoms. We collected 243 first morning urine samples from 4-8-year-old children in Tianjin, China. Eight metabolites (i.e., mono-ethyl phthalate (MEP), mono-isobutyl phthalate (MiBP), mono-n-butyl phthalate (MnBP), mono-benzyl phthalate (MBzP) and mono-2-ethylhexyl phthalate (MEHP), mono-(2-ethyl-5-carboxylpentyl) phthalate (MECPP), mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) and mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP)) of five phthalates were analyzed using HPLC-MS. MiBP, MnBP and MECPP were the dominant phthalate metabolites in urine of children in Tianjin with median concentrations of 31.6 µg/L, 26.24 µg/L and 46.12 µg/L, respectively. We found significantly positive associations of diagnosed asthma with MnBP (adjusted odds ratios (AOR): 1.96; 95% confidence intervals (CIs): 1.07-3.61), MEHHP (AOR: 2.00; 95% CI: 1.08-3.71) and MEOHP (AOR: 2.09; 95% CI: 1.06-4.10). Our study indicates that phthalate exposure in childhood, especially to di-n-butyl phthalate (DnBP) and di(2-ethylhexyl) phthalate (DEHP), may be a risk factor for children's asthma.


Assuntos
Asma , Poluentes Ambientais , Ácidos Ftálicos , Criança , Humanos , Pré-Escolar , Poluentes Ambientais/urina , Estudos de Casos e Controles , Ácidos Ftálicos/urina , Asma/induzido quimicamente , Asma/epidemiologia , Exposição Ambiental
16.
J Nanobiotechnology ; 20(1): 472, 2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36335349

RESUMO

Metastasis and chemical resistance are the most serious problems in the treatment of highly aggressive uveal melanoma (UM). The newly identified lncRNA OUM1 is overexpressed in UM, functions as a catalyst and regulates protein tyrosine phosphatase (PTP) activity by binding to PTP receptor type Z1 (PTPRZ1), which plays an important role in cell proliferation, metastasis and chemotherapy resistance in the UM microenvironment. Hence, siRNAs that selectively knocking down the lncRNA OUM1 (siOUM1) and its target gene PTPRZ1 (siPTPRZ1) were designed to inhibit the OUM1/PTPRZ1 pathway to reduce PTP activity, and this reduction in activity interrupts protein tyrosine phosphorylation, suppresses UM proliferation and metastasis and improves cisplatin sensitivity in UM cells. Then, to overcome the limitations of the difficulty of drug administration and traditional therapeutics, the indocyanine green (ICG)-labeled manganese metal-organic framework (MOF) nanoparticles (NPs) were fabricated and linked with arginine-glycine-aspartate (RGD) peptide to carry siOUM1/siPTPRZ1 and cisplatin to achieve targeted siRNA interference-mediated therapy, enhanced cisplatin therapy and chemodynamic therapy. This NP system also has a dual-modal imaging ability because ICG is a near-infrared region fluorescent dye and manganese has the potential to be used in magnetic resonance imaging. This study verifies the significance of the newly discovered lncRNA OUM1 as a new therapeutic target for aggressive UM and provides a drug delivery NP system for precise treatment of UM accompanied with a dual-modal imaging ability.


Assuntos
Estruturas Metalorgânicas , Nanopartículas , RNA Longo não Codificante , Manganês , RNA Longo não Codificante/genética , Cisplatino/farmacologia , Linhagem Celular Tumoral , Verde de Indocianina , Íons , RNA Interferente Pequeno
17.
Front Med (Lausanne) ; 9: 811237, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35928296

RESUMO

Purpose: This article was designed to provide critical evidence into the relationship between ambient temperature and intensity of back pain in people with lumbar disc herniation (LDH). Methods: Data concerning patient's age, gender, diagnostic logout, admission time, discharge time, residence area, and work area (residence area and work area were used to ensure research area) from 2017 to 2019 were obtained from the Neck-Shoulder and Lumbocrural Pain Hospital in Jinan, China. A total of 1,450 hospitalization records were collected in total. The distributed lag non-linear model (DLNM) was used to evaluate the relationship between lag-response and exposure to ambient temperature. Stratification was based on age and gender. Days 1, 5, 20, and 28 prior to admission were denoted as lags 0, 5, 20, and 28, respectively. Results: An average daily temperature of 15-23°C reduced the risk of hospitalization the most in men. Conversely, temperatures <10°C drastically increased hospitalization in men, particularly in lags 0-5 and lags 20-28. Men aged between 40 and 50 years old showed less effect in pain sensation during ambient temperature. Conclusion: High or low ambient temperature can increase the hospitalization risk of LDH, and sometimes, the temperature effect is delayed.

18.
Nat Cell Biol ; 24(6): 906-916, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35681008

RESUMO

Lysosomes are key cellular organelles that metabolize extra- and intracellular substrates. Alterations in lysosomal metabolism are implicated in ageing-associated metabolic and neurodegenerative diseases. However, how lysosomal metabolism actively coordinates the metabolic and nervous systems to regulate ageing remains unclear. Here we report a fat-to-neuron lipid signalling pathway induced by lysosomal metabolism and its longevity-promoting role in Caenorhabditis elegans. We discovered that induced lysosomal lipolysis in peripheral fat storage tissue upregulates the neuropeptide signalling pathway in the nervous system to promote longevity. This cell-non-autonomous regulation is mediated by a specific polyunsaturated fatty acid, dihomo-γ-linolenic acid, and LBP-3 lipid chaperone protein transported from the fat storage tissue to neurons. LBP-3 binds to dihomo-γ-linolenic acid, and acts through NHR-49 nuclear receptor and NLP-11 neuropeptide in neurons to extend lifespan. These results reveal lysosomes as a signalling hub to coordinate metabolism and ageing, and lysosomal signalling mediated inter-tissue communication in promoting longevity.


Assuntos
Proteínas de Caenorhabditis elegans , Neuropeptídeos , Ácido 8,11,14-Eicosatrienoico/metabolismo , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Longevidade/genética , Lisossomos/metabolismo , Neurônios/metabolismo , Neuropeptídeos/metabolismo
19.
Colloids Surf B Biointerfaces ; 214: 112450, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35287069

RESUMO

In hyperglycemia patients, suffering from insufficient vascularization and vascular network lesion, tissue regeneration, such as bone repair, is limited and maybe delayed by the secondary injury and hyperglycemic microenvironment. Typically, dental therapies involving guided bone regeneration is facing a difficult condition in the patients with diabetes. In this study, a hybrid membrane was endowed with biomimetic function to create an angiogenesis-inductive microenvironment by calcium ion release to overcome the limitations of bone tissue regeneration in diabetic patients. Biomineralized calcium resource was Janus-structured onto the surface of hybrid hydrogel by layer-by-layer technique to enhance vascularization and improve the bone regeneration in this study. The release of calcium ions from mineralized phases was controlled by the solubility of inorganic phases and the degradation of gels, promoting HIF-1α expression and creating a key role in angiogenesis stimulation. With highly enhanced calcium signaling and blood vessel formation, the hybrid hydrogel membranes improved the recruitment, proliferation and differentiation of mesenchymal stem cells and endothelial progenitors, confirmed by the enhancement of microvascular regeneration and new bone formation in the critical-sized calvarial defect in diabetic model in vivo. Our study demonstrates a translational potential of hybrid hydrogels engineered with inorganic minerals for orthopedic applications in hyperglycemia.


Assuntos
Hidrogéis , Hiperglicemia , Regeneração Óssea , Cálcio , Humanos , Hidrogéis/farmacologia , Osteogênese
20.
Biotechnol Bioeng ; 119(6): 1392-1404, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35249214

RESUMO

Chinese Hamster Ovary (CHO) cells are widely used for the high-level production of recombinant proteins. We created a multiauxotrophic mutant of CHO-K1 cells, CHO8A, that is deficient in eight enzymatic steps in the purine/pyrimidine biosynthetic pathways. Prototrophy was restored by transfections with complementary DNA-based genes for the eight missing activities. CHO8A cells permit: (1) selection of transfectant clones that have incorporated genes for eight or more different polypeptides, suitable for engineering complex proteins, or pathways; and (2) the single-step selection of high producers of a particular protein. The latter is achieved by simultaneous use of eight vectors, each bearing one of the eight rescue genes and a cargo protein gene. Screening as few as 10 surviving colonies yielded high producers secreting mAbs at 84 picograms per cell per day or more. CHO8A was isolated by CRISPR-Cas9 knockout of 10 genes in the pathways to pyrimidines (Dhodh, Umps, Ctps1, Ctps2, and Tyms) and purines (Paics, Atic, Impdh1, Impdh2, and Gmps).


Assuntos
Engenharia de Proteínas , Animais , Células CHO , Cricetinae , Cricetulus , Proteínas Recombinantes/metabolismo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...